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ABSTRACT 

 

Unsteady wakes can be produced as a result of quasi-sinusoidal ship motion, by the ship’s screws 

and by the reflection of ambient waves especially from the bow section of a ship hull.  Unlike a 

steady wake, such as the Kelvin wake, the waves of an unsteady wake are not stationary in the 

reference frame of the source distribution.  Such wakes might be important for the detection and 

classification of the vessel producing them; indeed surface ship wakes are common in radar 

imagery from space-borne radar.  This paper describes the theory for the crest patterns for 

unsteady waves on a discrete internal layer and at the surface.  Examples of patterns are 

presented for various cases.  The drag produced by the production of an internal wave wake 

depends on the rate of production of momentum in the wake waves.  This is compared to the 

energy carried away by the waves. 

 

 

1. INTRODUCTION
 
 

 

HE WAKE from a vessel moving on or beneath 

the sea surface can often be seen in satellite-borne 

radar images of the ocean. Wakes can be used to 

aid the detection of a ship and for classification purposes. 

Whatever the sensor type, a consideration of the 

hydrodynamics of wake production is necessary to 

interpret the wake.  Many types of wake can be created, 

such as the turbulent wake and the Kelvin wake of surface 

gravity waves. Here internal waves are considered and 

especially the case of unsteady internal wave wakes: the 

steady internal wake is a particular case in this class. The 

intention of this paper is to provide a framework for their 

examination and to describe some of their properties. As 

will be seen, the treatment to a large extent includes 

surface gravity waves as a special case. 

The water in the ocean often exhibits small spatial 

variations.  Its density is roughly horizontally stratified 

and fluctuates as a function of depth due to changes in 

salinity and temperature.  Internal waves can propagate in 

three dimensions within the layers.  In the case of ships, 

the waves that are generated often have a long wavelength 

comparable to the depth of a layer and there is 

considerable justification for simplifying the model.  A 

single discrete layer corresponding to an abrupt change in 
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fluid density is adopted.  This should have the advantage 

of illustrating many of the principal effects while the 

treatment remains reasonably transparent. 

The depth of internal layers in the ocean typically lies 

in the range of a few metres to 200 m and the change in 

density at an internal interface varies with location, 

latitude and season.  Near estuaries, there can be a change 

of density across an interface of about one percent while, 

in the open ocean in the tropics during summer the change 

is less, say 0.4 percent (Pickard and Emery, 1990). 

A steady wake is generated by a perturbation that is 

constant in time within the reference frame of the ship.  

For the Kelvin wake, this perturbation arises from the 

flow of water around the hull.  As a direct result of this, 

the wave pattern in the wake is also stationary in the ship 

frame.  In contrast, unsteady wakes are generated by 

unsteady sources in the ship frame and similarly the wave 

patterns are unsteady.  Unsteady wakes can be created by 

quasi-sinusoidal oscillations due to ship motions, the 

propeller and ambient waves reflected from the hull.  

However, the source terms are treated as exactly 

sinusoidal because the theory is based on the assumption 

of linearity  and, at least in principle, any disturbance can 

be constructed from a sum of Fourier components. 

Previous work on unsteady wakes seems to have 

focussed on surface waves.  Crest patterns for unsteady 

surface wakes are illustrated by Wehausen and Laitone, 

1960, but there has been some difficulty matching the 

crest patterns near the wake edge where there is a caustic.  

The calculation of the crest pattern is important for an 

appreciation of the wake appearance and is a first step 
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towards a full simulation of the wake from a ship.  

Simulations of the wave heights in an unsteady wake of 

surface gravity waves have been described by Tunaley, 

1998. 

Apart from their variation in time, unsteady wakes 

can exhibit a variety of features.  For example, if the 

source of the wake is travelling very slowly, it is to be 

expected that waves can precede the ship as they 

propagate outwards in a roughly circular pattern.  At 

moderate and high ship speeds there should be transverse 

and diverging waves.  A practical wake is usually 

confined to a V-shape and its angle will change as a 

function of the parameters including the source frequency.  

The V-wake is the wake of interest here rather than the 

case of waves preceding the ship. 

 

 
 

Fig. 1 Wake Geometry 
 

 

The crest pattern is determined wholly by the 

dispersion relation for the waves and this involves the 

angular wave frequency, ω, and the angular wave vector, 

k.  For an interface at depth h in an infinitely deep ocean 

where water of density ρ1 overlies water of density ρ2, the 

dispersion relation can be found by assuming a velocity 

potential, Φ.  This is of the form of a traveling wave in the 

horizontal direction and exponential in the vertical 

direction, and applying the appropriate boundary 

conditions at the free surface and at the internal layer 

(Crapper, 1967, or for the boundary conditions see 

Wehausen and Laitone, 1960) yields: 
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where g is the acceleration due to gravity.  The first term 

in parentheses corresponds to surface gravity waves while 

the second corresponds to internal waves.  Surface waves 

are dispersive and the internal wave propagation is also 

dispersive except for large wavelengths compared with 

the depth of the layer.  It is also worth noting that, if the 

upper fluid boundary condition is modified so that no 

surface waves are permitted, the result for internal waves 

is the same but the first term in parentheses 

(corresponding to surface waves) is absent. 

 

2. THEORY 

 

The wave vectors of the waves from a stationary 

oscillating source can be found from the dispersion 

equation in (1) and the crest pattern is in the form of 

circles concentric with the source. More generally, as a 

source moves horizontally at constant velocity, U, it 

creates a train of disturbances, which propagate radially 

outwards from the points at which they were created.  

This is illustrated in Fig. 1 which represents the unsteady 

wake and is analogous to the steady situation described by 

Keller and Munk, 1970. 

The phase, w, of the wave at a point in the wake can 

be deduced from Fig. 1: 

 

 kstw   )(0 , (2) 

 

where ω0 is the angular frequency of the source, t is the 

time, τ is the time interval over which the wave has been 

propagating and s is the distance traveled by the wave.  

Maximum wave amplitudes will occur when the rate of 

change of phase with respect to k is zero: there will be a 

tendency for a group of waves to interfere constructively.  

Applying this stationary phase condition to (2) merely 

implies that s = cgτ, where the group velocity, cg, is 

obtained from the dispersion relation by differentiation of 

ω with respect to k.  Noting that the phase velocity, c, is 

just ω/k, (2) can be rearranged to yield: 
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where s is the phase of the source equal to 0t. In 

principle, the numerator can be positive or negative but to 

eliminate unphysical situations in which waves propagate 

inwards from infinity,   > 0. 

 The frequency of the waves in the water is related to 

the source frequency by the Doppler relation: 

 

  cos0 kU , (4) 

where θ is the angle between the wave vector and the 

source track.  This can be rearranged yielding: 
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Now c can be found from the dispersion equation so 

that cosθ can be calculated as a function of k.  A snapshot 
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of the pattern for a single crest can be established by 

setting the numerator of (3) to some constant.  Thus the 

time τ can be found for each value of k along a crest.  

Furthermore the position of this crest can be determined 

from Fig. 1: 
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where x is a horizontal coordinate directed astern of the 

ship and y is a transverse coordinate. In effect, k can be 

regarded as a parameter tracing out each crest. 

The phase at a crest remains constant as the pattern 

evolves with time.  Since both x and y are proportional to 

τ, the individual crest shapes, separated by a phase 

difference of 2π, are identical except for a scale 

transformation and, as the pattern evolves, each crest 

moves so that it takes the place of another.  

It is important to notice that in general there will be 

contributions to the wake from both positive and negative 

source frequencies.  For example, a source that varies in 

time as a real cosinusoid can be decomposed into two 

complex exponential terms so that there will be equal 

contributions from both positive and negative frequencies.  

This gives rise to two separate wake components which in 

a linear theory are superposed.  However, the two wake 

components will usually not be excited to an equal extent 

except when ω0 = 0, in which case the wake is steady and 

the two wake components coalesce. 

In the frame of the source, the crest pattern of the 

steady wake is stationary.  This is because U cosθ = c: the 

velocity of the crests matches the component of the 

source velocity along the wave vector and translations 

parallel to the crests are irrelevant.  This is not the case 

for unsteady wakes, as can be seen from (5), so that the 

crest patterns will appear to move at different speeds.  

This can result in complicated wave patterns due to 

interference between the two wake components. 

The principal part of the algorithm for calculating a 

single crest pattern can be summarized in the form of 

pseudo-code as follows
2
: 

 

SET the source frequency, ω0, its speed, U, and internal 

layer parameters (h, ρ1, ρ2); 

SET the value of the relative phase (s-w) to 2π (or a 

multiple of this); 

FOR (a wide range of values of k) DO { 

Calculate the phase and group velocities (c, cg)  from 

the dispersion relation in (1); 

Calculate the propagation time, τ, from (3); 

IF (τ<0) { 

Change the sign of the relative phase; 

                                                 
2 Details, including resolution of a possible ambiguity, will be provided 
in another paper. 

} 

Calculate the cosine of the angle of the propagation 

vector, cosθ, from (5);  

Calculate the x and y coordinates of the crest 

corresponding to the current value of k using (6);} 

 

3. CREST PATTERNS 
 

In the following it is assumed that the fractional 

change in fluid density across the internal interface, δ, is 

small. 

By a process of normalization, the crest patterns for 

surface gravity waves can be reduced to a one-parameter 

family: the maximum wake angle can be described as a 

function of a reduced source frequency. Only two 

parameters (0 and H) are required for internal gravity 

waves if the following normalization is adopted: 

 

U

g
T

U

gh
H

U

gy
Y

U

gx
X

g

kU

g

U

g

U






















,,,

,,,

222

2
0

0

. (7) 

For example the dispersion relation for internal 

waves becomes: 
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The reduced phase velocity, C = c/U = /κ, while the 

reduced group velocity, Cg = cg/U = d/dκ, is given by 
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When κH is very large, the denominator in the 

dispersion equation approaches two and the dispersion 

relation resembles that for ordinary surface waves.  

Reference to (9) shows that the group velocity approaches 

half the phase velocity as expected.  When κH is very 

small, the group velocity approaches the phase velocity 

and the propagation is dispersionless with a normalized 

phase (and group) velocity C = c/U = H, which in fact is 

the maximum velocity of internal waves in the fluid.  

To classify the various patterns it is helpful to 

calculate a family of curves showing the maximum wake 

angle as a function of the normalized source angular 

frequency, 0, for different values of the normalized 

internal layer depth, H.  This is shown in Figs. 2 and 3 in 

which the maximum half angle of the wake is plotted 

against the logarithm to the base 10 of the normalized 

angular frequency: Fig. 2 applies to positive frequencies 

and Fig. 3 to negative frequencies.  The calculation is 

based on finding the angle β within the wake (see Fig. 1) 

using the algorithm described in the previous section and 
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then determining the maximum value of this wake half 

angle β. 
 When H = , (or 1000 in this case) the curves 

resemble those presented by Lighthill, 1980.  When H >> 

1, the internal layer is effectively deep; the wake pattern 

resembles that for surface gravity waves.  When H is 

large and 0 = 0, a Kelvin wake is produced with the well 

known half angle of 19.47 degrees.  As H decreases 

towards one, the angle of steady wakes increases and 

then, as H falls below one, the steady wake angle 

decreases.  When H < 1, an upper limit to the wake half 

angle is provided by the maximum normalized wave 

velocity which is H: this limiting wake half angle is just 

equal to sin
-1

(H). 

When 0 is positive and H > 1, the wake angle first 

tends to increase with increasing source frequency.  There 

is then a gap in the curves of Fig. 2.  This is because at 

low source frequencies there exist waves that propagate 

ahead of the ship.  These waves tend to have very long 

wavelengths which are not considered explicitly in the 

algorithm responsible for producing the graphs.  

However, in the gap these forward waves can affect the 

calculation and, to avoid confusion, all contributions have 

been omitted.  As the source frequency increases beyond 

the gap, the wake angle, which at first is very wide, 

progressively narrows.  At very high source frequencies, 

the curves for different values of H appear to coalesce. 

The crest patterns can be calculated numerically 

using normalized parameters and the recipe in Section 2.  

For V-wakes there are basically two types of crest pattern.  

The first resembles the structure of divergent and 

transverse waves that is familiar from the Kelvin wake.  

An example of this structure is shown in Fig. 4 for an 

unsteady source with 0 = 0.002 and H = 1.5.  The figure 

depicts a snapshot in time of a single crest for each of the 

two wake components corresponding to positive and 

negative frequencies.  It applies to a time when the source 

at the origin is at its maximum amplitude and the phase of 

the crest relative to that of the source is 2π.  Other crest 

locations can be calculated by multiplying the coordinates 

of the crest by integer values.  Where the divergent and 

transverse waves meet at the wake component edges, 

there are likely to be caustics of cusp waves. 

When the source frequency is positive, this type of 

structure appears at low source frequencies below the 

critical frequency at which there are waves preceding the 

source and for which H > 1.  It also appears for negative 

frequencies for all values of H.  An evaluation of the 

velocities of the waves shows that, to an observer on the 

ship, the positive frequency wake component appears to 

travel towards the ship while the negative frequency 

component appears to move away. 

When H < 1, the source speed is always greater than 

the maximum velocity of the internal waves.  Therefore 

there can be no waves preceding the ship.  For negative 

source frequencies this is also the case whatever the 

(positive) value of H.  Thus for H < 1 there are no gaps in 

the curves of Fig. 2 and none in Fig. 3 for all H. 

 

 
 

Fig. 2 Wake maximum half angle for positive 
frequencies. 

 
Fig. 3 Wake maximum half angle for negative 

frequencies. 
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Fig. 4 Crest patterns for H = 1.5, 0 = 0.002. 
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Above the critical source frequency, the form of the 

crest pattern for the positive frequency component 

changes to a second type of solution while that for the 

negative component still resembles the Kelvin wake.  The 

general form of the crest pattern is illustrated by an 

example for H = 0.5 and 0 = 1.0 in Figs. 5 and 6 for 

positive and negative frequencies respectively.  The crests 

exhibit both transverse and divergent waves but with a 

different structure from the Kelvin wake.  Because H < 1, 

the wake must be confined to a half angle less than 45 

degrees (see also Fig. 2), which is certainly the case.  
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Fig. 5. Crest pattern for H = 0.5, 0 = +1.0. 
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Fig. 6. Crest pattern for H = 0.5, 0 = -1.0. 

 

 That part of the crest pattern corresponding to the arc 

in Fig. 5 can be observed when a large water bird is 

startled and paddles away from the observer. 

A further examination of the wake indicates that both 

crest components corresponding to positive and negative 

frequencies appear to move away from an observer on the 

ship. 

It is also worth noting that, when H < 1 and 0  0, 

corresponding to a steady wake, the two wake 

components coalesce into a pattern in which the 

transverse waves of the positive frequency component go 

to the origin while those of the negative frequency 

component go to infinity.  The result is a wake consisting 

of purely divergent waves.  

The patterns and strengths of waves and their 

velocity fields at the ocean surface are often of more 

interest than those of the waves at the internal interface.  

Since it is usually assumed that the velocity potential is of 

exponential form (see ahead to equation (12) or refer to 

Lighthill), any perturbations of the internal layer tend to 

be reduced at the surface by an exponential factor e
-kh

. 

This implies that the small wavelength waves will be 

attenuated at the surface and long wavelength waves will 

predominate.  As for the Kelvin wake, the transverse 

waves of an internal wave wake have the longest 

wavelengths and so these should often be the main feature 

of the surface manifestation of an unsteady internal wave 

wake. 

 

 

4. ENERGY AND MOMENTUM 
 

A consideration of the energy and momentum in the 

waves is important for the estimation of the wave 

resistance attributable to an unsteady wake and for the 

damping of the source terms (such as in heaving and 

pitching of a ship).  The waves in the wake carry both 

energy and momentum from the source.  When the wake 

is steady, such as when it arises from the movement of 

fluid around the ship’s hull, the energy carried away by 

the waves must be produced at the expense of the kinetic 

energy of the ship or by the propulsion system.  It can be 

interpreted as a wave-making resistance.  In fact various 

authors have calculated the wave-making resistance from 

the Kelvin wake (the principles are discussed by Lighthill, 

1980).  When the wake is unsteady, the energy in the 

waves can be produced not only as a result of drag on the 

ship but also by damping of the source itself: the heaving 

motion of a ship can result in both a drag additional to 

that from the Kelvin wake and in a damping of the 

heaving motion. 

To calculate the drag component, the rate of 

production of the component of momentum in the 

direction of the ship should be calculated.  This is 

numerically equal to the drag force by Newton’s laws.  

The momentum of a wave is a second order quantity in 

the wave amplitude, ζ, and therefore, on a strictly linear 

theory, it is zero.  Lighthill, 1980 (see exercise 1 on p 

249), points out that it is directly related to the Stokes 

drift.  Thus it may be calculated by considering the orbital 

motion of fluid elements as they move through points 

with differing velocity potential.  Lighthill, 1980, finds 

that for surface gravity waves, the momentum per unit 
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horizontal area, p, is: 

 2

2

1
p . (10) 

For internal waves, the calculation of the Stokes drift 

can be accomplished in two steps.  Below the internal 

interface, the velocity potential falls exponentially and the 

orbits of fluid elements are approximately circles.  

Therefore the momentum per unit area contributed by all 

the fluid below the interface is given by an expression 

similar to that for surface gravity waves: 

 2

2
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where ζ is now the internal wave amplitude.  Above the 

interface the orbits are ellipses and this requires a new 

calculation. 

Above the interface, the velocity potential is assumed 

to be of the form: 

 )cos()( kxtBeAe kzkz    . (12) 

This permits the horizontal and vertical components of the 

fluid velocity to be calculated in terms of the constants A 

and B.  The fluid element positions can be obtained by 

integration of the velocity with respect to time.  However, 

in the integration, x and z are treated as constant.  The 

horizontal distance traveled in one orbit can then be found 

to second order by substitution of the first order results in 

the velocity potential and performing a further integration 

of the velocity over a single period. 

  There are two contributions to this corresponding to 

variations in the velocity potential as a function of z and 

as a function of x.  (In the case of simple surface gravity 

waves these contributions are equal.)  The result for 

internal waves is that, at depth z, the Stokes drift per 

period, d, is given by: 
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 The average drift per period over that part of the 

ocean above the interface can be found by integrating 

over z.  Multiplying by the frequency, ω/(2π), gives the 

average drift velocity so that the momentum can be found.  

This gives the momentum of the waves in the fluid above 

the interface: 
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The remaining part of the calculation can be simplified if 

it is noted that the velocities associated with internal 

waves are greatest near the interface and tend to fall 

rapidly away from it.  If the boundary condition at the free 

surface is set so that no vertical surface displacement is 

permitted, then the z-component of the velocity at the 

surface must be zero and it can be shown from equation 

(12) that A=B.  Similarly, at the interface, the boundary 

condition can be written: 
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Thus adding the wave momentum per horizontal area 

from above the interface to that from below it (see (11)) 

gives: 
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This can be simplified using the dispersion equation 

(1) giving: 
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This result can be compared with the total mechanical 

energy in the waves, namely the sum of the kinetic and 

potential energies.  It has been noted by Lighthill, 1980, 

that in a linear system energy is transferred from kinetic 

to potential and back in each oscillation and that the 

average kinetic and potentials are equal.  Therefore the 

total energy is equal to the maximum kinetic or maximum 

potential energies.  This implies that, when no surface 

waves are permitted, the total energy per horizontal area, 

E, is equal to the maximum potential energy per unit area 

at the internal interface, i.e. 

 2

12 )(
2

1
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5. WAVE-MAKING DRAG 

 

The theory in Section 2 implies that for each point in the 

wake there exists a limited number, n, of wave vectors k 

that satisfy the stationary phase condition and other 

constraints.  These are the same wave vectors employed 

in the crest shape calculations and typically correspond to 

divergent and transverse waves of the two wake 

components.  If a spatial distribution of sources has been 

determined, it can be decomposed into Fourier 

components and, from these, the amplitude and direction 

of the waves at a point in the wake can be determined 

(e.g. Tuck et al, 1971).  To find the rate of production of 

wake momentum or wake energy, an integration of the 

momentum or energy can be performed along a strip of 

width (U - cg cosθ) dt running perpendicular to the source 

track (compare Milne-Thomson, 1968, pp 437, for 

example).  The position of this strip astern of the sources 

is not important because, with the exception of caustic 

regions (small in the far wake), the wave amplitude 

decreases as distance to the power -1/2 while its square 

falls inversely with distance.  On the other hand the width 

of the wake region increases as the distance. 

 The rate of production of the component of 

momentum parallel to the source track, which is the 

wave-making resistance, R, is given by 
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where β is the angle within the wake (see Figure 1) and 

±β0 are the wake limits. In contrast, the rate of production 

of wake energy is given by 
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If all the wake energy can be attributed to wave-

making resistance, dW/dt = RU.  When ω0 = 0 and the 

wake is steady, equation (4) indicates that 

  coskU . (21) 

By replacing c by ω/k in equation (19) and substituting 

from equation (21) it can be verified that energy and 

momentum considerations give the same drag, R.   

However, for unsteady wakes, this will generally not be 

true and the difference is related to damping of the source. 

The cosθ factor in the expression for the drag force in 

equation (19) can be negative.  This occurs when Ω0 is 

positive and it is larger than some critical value (which is 

a function of H) and represents the situation where the 

production of some component waves provides a 

propulsive force contribution. 

 

6. SUMMARY 
 

A simple numerical algorithm has been described 

from which the crest pattern for unsteady internal waves 

can be calculated.  Different crest patterns can be 

produced depending on the parameters. For practical layer 

strengths, layer depths and for source speeds of a few 

metres per second, the surface manifestation of an internal 

wave wake will exhibit a small wake angle which 

becomes narrower as the source frequency rises.  Unlike 

the typical steady internal wave wake for which H < 1 and 

which consists only of divergent waves, transverse waves 

can always occur with unsteady wakes.  At the water 

surface, these are likely to be the prominent feature of the 

unsteady wake and produce a narrow oscillating pattern 

astern of the source. 

The existence of a wake implies that there is a 

production of energy and momentum.  The calculation of 

the energy in the wake is not sufficient to determine 

wave-making resistance except in the steady case but the 

production of linear momentum is directly related to the 

drag on the ship.  It is noteworthy that, once momentum 

has been created in the water, it remains there until it is 

transferred to the air above the fluid, the ocean floor or 

the shore.  Therefore it is unaffected by wave breaking.  

This is in contrast to the wave energy which can be 

dissipated both by viscosity and by wave breaking as well 

as be affected by the action of the wind.  Therefore wave 

momentum provides a more reliable indicator of drag than 

the energy.  However, the wave momentum may be 

difficult to measure. 
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